
HTTP/2 & InfoSec
Anderson Dadario

Topics

2

● HTTP Today

● Why HTTP/2

● How it works

● What is relevant to your InfoSec job

3

HTTP Today
● Using HTTP 1.1 since 1997 / 1999

○ Connection: keep-alive

○ Head of Line Blocking

● But we still use N TCP Connections per origin ...

● And Many Hacks because requests are evil

○ CSS Spriting

○ Inlining

○ Concatenation

○ Domain Sharding

● No Header Compression

4

So comes SPDY in 2009
● With some cool stuff

○ Header Compression (vulnerable to CRIME)

■ Now cookieless domains are useless

○ Multiplexing

■ Now sharding is harmful (1 TCP connection per origin)

■ Has prioritization (e.g., focus on JS and CSS files)

○ Server Push

■ Although some pushes may be wasteful, there is “Server

Hint” for SPDY, and RST_STREAM for HTTP/2

○ HTTPS Only → there’s a gotcha here: do you wonder why?
avoid intermediaries

5

What about HTTP/2?
● Used SPDY 3 as its first draft

● Main Driven by Performance

● But also includes …

○ Security

○ Reliability

6

Key Differences
● Binary instead of ASCII

● Header Compression (HPACK - RFC 7541)

● Fully multiplexed - Means: Parallelism and Out of Order Req/Res

○ Stream Prioritization

○ 1 TCP Connection > N Streams > N Frames

● Solves Head of Line Blocking

● Server Push what it thinks that the client will need (e.g., assets)

7

HTTP/2 Units

STREAM

CONNECTION

FRAME FRAME FRAME FRAME

Frames have
- FLAGS,
- TYPE,
- STREAM IDENTIFIER,
- PAYLOAD and
- LENGTH

Streams have
- IDENTIFIER
- STATE
- PRIORITY
- FLOW CONTROL

Connections have
- FLOW CONTROL

8

HTTP/2 Frame Types
1. DATA

2. HEADERS

3. PRIORITY

4. RST_STREAM

5. SETTINGS

a. SETTINGS_HEADER_TABLE_SIZE

b. SETTINGS_ENABLE_PUSH

c. SETTINGS_MAX_CONCURRENT_STREAMS

d. SETTINGS_INITIAL_WINDOW_SIZE

e. SETTINGS_MAX_FRAME_SIZE

f. SETTINGS_MAX_HEADER_LIST_SIZE

6. PUSH_PROMISE

7. PING

8. GOAWAY

9. WINDOW_UPDATE

10. CONTINUATION

9

HTTP/2 GET

10

HTTP/2 POST Request

11

HTTP/2 POST Response

12

Request Reliability

13

Upgrade Request Anatomy

When you don’t know if it supports HTTP/2

GET / HTTP/1.1
 Host: server.example.com
 Connection: Upgrade, HTTP2-Settings
 Upgrade: h2c
 HTTP2-Settings: <base64url encoding of HTTP/2 SETTINGS payload>

[Response]
 HTTP/1.1 101 Switching Protocols
 Connection: Upgrade
 Upgrade: h2c

● A server MUST NOT upgrade the
connection to HTTP/2 if this header
field is not present or if more than one
is present.

● A server MUST NOT send this header
field.Implicit acknowledgement of HTTP2-Settings

● “h2c” means no TLS connection
● “h2” means TLS connection [TLS-ALPN]

14

InfoSec Overview 1-4
● Increased Attack Surface

○ Supporting HTTP/1 and HTTP/2

○ HTTP/2 extensions (e.g., new settings, frame type or error code)

○ Possibility to simulate bad implementations that results in DoS

■ e.g., reply RST_STREAM to a RST_STREAM frame.

● Non mature implementations == High probability to find Bugs

○ E.g., Yahoo fuzzing Apache HTTP/2

● DAST Market

○ Force scanners to support HTTP/2

○ Decrease scan time

http://yahoo-security.tumblr.com/post/122883273670/apache-traffic-server-http2-fuzzing

15

InfoSec Overview 2-4
● Wireshark support (partially)

○ Support HPACK but missing continuation frame support...

● Frame Padding to obscure the size of messages

○ “Use of padding can result in less protection than might seem

immediately obvious. At best, padding only makes it more

difficult for an attacker to infer length information by increasing

the number of frames an attacker has to observe.” RFC 7540

● TLS Cipher Blacklist (MAY trigger INADEQUATE_SECURITY ERR)

● TLS 1.2 or higher w/ SNI support is a MUST

● TLS MUST disable compression and renegotiation

16

InfoSec Overview 3-4
● TLS Implementations MUST support ephemeral key exchange sizes

of at least 2048 bits for cipher suites that use ephemeral finite field

Diffie-Hellman (DHE) [TLS12] and 224 bits for cipher suites that use

ephemeral elliptic curve Diffie-Hellman (ECDHE) [RFC4492]. Clients

MUST accept DHE sizes of up to 4096 bits.

● Opportunistic Security for HTTP (...)

○ “(...) serve http URIs over TLS

without being required to

support strong server

authentication. (...)”

For pentesting:
● it is possible for server configurations to

change;
● for configurations to differ between

instances in clustered servers, or
● for network conditions to change.

17

InfoSec Overview 4-4
● (...) Opportunistic Security for HTTP (Opportunistic Encryption)

○ No padlock symbol

○ Won’t verify X.509 certificate: “(...) The server certificate, if one is

proffered by the alternative service, is not necessarily checked

for validity, expiration, issuance by a trusted certificate

authority or matched against the name in the URI. (...)”

○ Left out from HTTP/2 RFC

○ Polemic: does it prevents HTTPS adoption or help HTTP?

● ALMOST mandatory HTTPS as Google and Firefox said that their

browsers will only allows HTTP/2 for HTTPS connections

● Many open TCP connections (persistent connections)

18

HTTP/2 Adoption Rate
● Browsers: Chrome and Firefox latest versions support already

● Servers: Apache (mod_h2), jetty, Apache Traffic Server

● Services: Google, Twitter

● Proxy: Squid

● CDN

○ Akamai said in the end of the year and

○ CloudFlare when ‘nginx supports HTTP/2’

19

References 1-2
1. HTTP/2 - RFC 7540 - http://www.rfc-editor.org/rfc/rfc7540.txt
2. HPACK - RFC 7541 - http://www.rfc-editor.org/rfc/rfc7541.txt
3. ALPN - RFC 7301 - https://tools.ietf.org/html/rfc7301
4. HTTP/2 Home - https://http2.github.io/
5. Daniel’s Blog - http://daniel.haxx.se/blog/
6. SPDY & HTTP 2 with Akamai CTO Guy Podjarny https://www.

youtube.com/watch?v=WkLBrHW4NhQ
7. An overview of HTTP/2 with Daniel Sommermann https://www.

youtube.com/watch?v=-yxQIRl6Qic
8. HTTP/2 (Mark Nottingham) https://www.youtube.com/watch?

v=OQ158bJPvx4

http://www.rfc-editor.org/rfc/rfc7540.txt
http://www.rfc-editor.org/rfc/rfc7541.txt
https://tools.ietf.org/html/rfc7301
https://http2.github.io/
http://daniel.haxx.se/blog/
https://www.youtube.com/watch?v=WkLBrHW4NhQ
https://www.youtube.com/watch?v=WkLBrHW4NhQ
https://www.youtube.com/watch?v=WkLBrHW4NhQ
https://www.youtube.com/watch?v=-yxQIRl6Qic
https://www.youtube.com/watch?v=-yxQIRl6Qic
https://www.youtube.com/watch?v=-yxQIRl6Qic
https://www.youtube.com/watch?v=OQ158bJPvx4
https://www.youtube.com/watch?v=OQ158bJPvx4
https://www.youtube.com/watch?v=OQ158bJPvx4

20

References 2-2
9. Pervasive Monitoring - RFC 7258 - http://www.rfc-editor.

org/info/rfc7258
10. Opportunistic Security for HTTP - http://httpwg.github.io/http-

extensions/encryption.html
11. HTTP/2 Book - http://daniel.haxx.se/http2/
12. TLS in HTTP/2 - http://daniel.haxx.se/blog/2015/03/06/tls-in-http2/
13. HTTP BIS mailing list

http://www.rfc-editor.org/info/rfc7258
http://www.rfc-editor.org/info/rfc7258
http://www.rfc-editor.org/info/rfc7258
http://httpwg.github.io/http-extensions/encryption.html
http://httpwg.github.io/http-extensions/encryption.html
http://httpwg.github.io/http-extensions/encryption.html
http://daniel.haxx.se/http2/
http://daniel.haxx.se/blog/2015/03/06/tls-in-http2/

Thanks!Anderson Dadario
anderson@gauntlet.io | Twitter: @andersonmvd

http://Gauntlet.io

QUIC: UDP-
based

transport
protocol for the

modern
Internet

 Today, roughly half of

all requests from
Chrome to Google

servers are served over
QUIC

mailto:anderson@gauntlet.io
mailto:anderson@gauntlet.io

